Con la tecnología de Blogger.

Matemáticas China



Un primer periodo, que señalan los especialistas, es el comprendido entre el 200 a.C. al 220 d.C, y corresponde a la dinastía Han. Se trata de una etapa en la que se advierten relevantes resultados en ciencias y tecnologías. Por ejemplo, en astronomía la construcción de calendarios e, incluso, hasta cuadrados mágicos que fueron una interesante tradición entre los chinos. Hubo importantes clasificaciones de plantas y animales. El papel, otro ejemplo, es de esta época.
cuadrados mágicos fueron una interesante tradición entre los chinos
Cuadrado Mágico sobre una tortuga.



Es en este contexto histórico cuando se compiló uno de los textos clásicos de las matemáticas chinas que tuvo una extraordinaria influencia: el Chiu Chang Suan Shu (Nueve capítulos sobre las artes matemáticas). Se afirma que sería algo así como los Elementos de Euclides en la cultura griega. Dos figuras se reconocen como sus creadores: Chang Shang (c. 150 a.C.) y Keng Shou Chang (c. 50 a.C.).

Chiu Chang Suan Shu
Se afirma que sería algo así como los Elementos de Euclides en la cultura griega
En un periodo posterior se reconoce el trabajo de dos matemáticos: Sun Tsu (c. 300 d.C.) y Tsu Chung Chih (c. 450 d.C.). Sun es una primera referencia para el análisis indeterminado.
Tsu Chung Chih
Un par de siglos después, en el año 656, apareció una enciclopedia matemática: Suan Ching Shih Shu (Los diez manuales matemáticos), que ejerció su influencia en los siglos siguientes.

Un siguiente momento ya se encuentra en la dinastía Sung (960 - 1 279), que tuvo importantes logros en las matemáticas. Por ejemplo, la obra Su Shu Chiu Chang (Las nueve secciones matemáticas), escrito por Chin Chiu Shao en el año 1247. En esta obra encontramos resolución (numérica) de ecuaciones de todos los grados y nuevos resultados en el análisis indeterminado. Estos métodos en la resolución de ecuaciones se completaron con la construcción de ecuaciones a partir de datos dados, algo que se encuentra en el libro Tshe Yuan Hai Ching, escrito por Li Yeh en el año 1248. 

En esta obra encontramos resolución (numérica) de ecuaciones de todos los grados y nuevos resultados en el análisis indeterminado
Yang Hui publicó varias obras en el periodo entre 1261 y 1275, entre ellas: Hsiang Chieh Chiu Chang Suan Fa Tsuan Lei (Análisis detallado de los nueve capítulos). Este último incluye resultados en series, ecuaciones de segundo grado con coeficientes negativos de x, numéricas de orden superior. 
Triángulo de Pascal de Chu Shih Chieh

Chu Shih Chieh fue otro matemático relevante, que se afirma fue un gran algebrista. Escribió dos tratados: Suan Shu Chi Meng (Introducción a los estudios matemáticos) y Szu Yuen Yu Chien (El precioso espejo de los cuatro elementos), el primero en 1299 y el segundo en 1303. Aquí encontramos, por ejemplo, el llamado triángulo de Pascal, métodos para resolver ecuaciones de grados superiores, resolución de ecuaciones usando un método que hoy juzgaríamos utilizó las matrices. 

Otro de estos grandes matemáticos, pero del que hay menos fuentes, es Kou Shou Ching (siglo XIII), quien se supone hizo la primera obra sobre la trigonometría esférica de la China.
Hay varios aspectos de las matemáticas chinas que vale la pena reseñar. 
Uno de ellos es la existencia de un sistema posicional con 9 números, que se adelantaría un milenio a los hindúes. 

Varillas

Veamos un asunto sumamente interesante: un sistema de números por medio de varillas (eran de marfil, madera, hierro colado, jade o bambú), que, desde el siglo III d.C., tuvo un papel importante en las características de las matemáticas chinas. Este sistema permitía usar números negativos (negras) y positivos (rojas). Una forma de este tipo de números se recoje en la tabla siguiente.
Números Chinos


Los números hengs(vertical) servían para representar unidades, centenas, decenas de millar, etc. Los tsungs(horizontales) , las decenas, millares, centenas de millar, etc.
Todas las operaciones se podían hacer como si se tratase de un ábaco. Es interesante que este sistema permitió incluso la resolución de ecuaciones, con lo que se expandió una forma de álgebra o aritmética geométrica. De hecho, es a partir de este tipo de representaciones que emergen las "matrices'' chinas.
Dentro de este sistema de varillas es que se desarrolló naturalmente un álgebra de números negativos.

La opinión es que debe colocarse en una tradición algebraica y aritmética similar a la desarrollada por los babilonios.

Chiu Chang


Posee 246 problemas repartidos en 9 capítulos que consideraban temas de interés social en ese escenario. Comentadores posteriores como Liu Hui en el siglo III y Yang Hui en el XIII ampliaron estos trabajos. La opinión es que debe colocarse en una tradición algebraica y aritmética similar a la desarrollada por los babilonios. En todos los casos que se plantean, se trata de problemas prácticos.

En un primer capítulo (Fang thien) se incluye las reglas para calcular áreas de triángulos, trapecios, círculos, rectángulos, así como una aritmética de fracciones.
El segundo capítulo es de porcentajes y proporciones.
El cuarto es sobre extracción de raíces cuadradas y cúbicas. Aquí había una base geométrica para proseguir los procedimientos. De hecho, posteriormente, el método que usaron sirvió en la resolución de ecuaciones de segundo grado. Se dice que este método también sería adoptado por los coreanos y japoneses. 

El capítulo quinto (Shan kung) incluye procedimientos para calcular volúmenes del cilindro, pirámide rectangular, tetraedro, tronco de pirámide cuadrangular, y el tronco de prisma recto triangular (este último en Occidente se iría a consignar hasta Legendre, en 1794).
El octavo capítulo aborda la solución de ecuaciones simultáneas con 2 o 3 incógnitas. Esto se hace por medio de tablas con un método semejante al moderno matricial. Con ese procedimiento se incluían también números negativos.
Es decir, matrices, un procedimiento similar al método de eliminación (en Occidente, se llamaría de Gauss), e incluso una forma de la regla de Cramer estuvieron presentes en las matemáticas chinas varios siglos antes de que los europeos los desarrollaran. Se trata de un método que no fue usado en ninguna otra tradición cultural, y se piensa que fue derivado casi directamente de las características del sistema de varillas.
Este texto matemático, uno de los más antiguos del mundo, es por supuesto más amplio y rico que los que se poseen de las civilizaciones egipcias y babilónicas. 

A partir del siglo XIII tenemos los mejores desarrollos de los chinos en las matemáticas

Resultados relevantes

Diagrama Kou ku, Se trata del teorema de Pitágoras
A partir del siglo XIII tenemos los mejores desarrollos de los chinos en las matemáticas. Estos se pueden resumir así: la resolución de ecuaciones numéricas de orden superior, basada en la extracción de raíces cuadráticas y cúbicas del Chiu Chang y en el uso de triángulo de Pascal. Este método se rastrea desde Chia Hsien (c. 1050), y se indentifica con el nombre de li cheng shih shuo (resolución de coeficientes mediante una gráfica). Había otro método que se llamaba tseng cheng fang fa o método de extracción mediante suma y multiplicación.
Por otra parte, en torno a la confeción de calendarios y las necesidades de la astronomía, se desarrollaron procedimientos en las ecuaciones indeterminadas. Hubo también fórmulas de interpolación cúbica (Kuo Shou Ching, c. 1275), algo parecido al método de Newton-Stirling. Esto no se ampliaría en Europa sino hasta el siglo XIX.
Un par de detalles adicionales: el teorema Kou ku. Se trata del teorema de Pitágoras. Este aparece demostrado en un texto muy antiguo llamado Chou Pei.

La relevancia del teorema y sobre todo sus aplicaciones fueron muy importantes para construir una álgebra geométrica

La demostración se hace por medio de diagramas. George Gheverghese Joseph cita un pasaje
traducido por Needham con el procedimiento, que bien vale la pena introducir:
"Cortemos un rectángulo (por la diagonal), de manera que la anchura sea 3 (unidades) y la longitud 4 (unidades). La diagonal entre los (dos) extremos tendrá entonces una longitud de 5. Ahora, tras dibujar un cuadrado sobre esta diagonal, circunscribirlo con semirrectángulos como el que ha sido dejado en el exterior, de modo que se forme una figura plana (cuadrada). Asi, los (cuatro) semirrectángulos exteriores, de anchura 3, longitud 4 y diagonal 5. forman en conjunto dos rectángulos (de 24 de área); luego (cuando esto se resta de la figura plana cuadrada de área 49), el resto tiene 25 de área. Este (proceso) se llama 'apilamiento de rectángulos'.'' 
La relevancia del teorema y sobre todo sus aplicaciones fueron muy importantes para construir una álgebra geométrica; es decir, lo que a veces no se reconoce: se dio un intento serio de los chinos por usar la geometría en la demostración de resultados algebraicos y aritméticos.
Otro detalle, el cálculo de Liu Hui hizo una aproximación en su comentario del Chiu Chang por un método parecido al de exhausción que usara Arquímedes.
Existen en el Chiu Chang procedimientos para la extracción de raíces cuadradas y cúbicas. Estos fueron refinados por Sun Tsu y otros y fueron ampliados decisivamente en el siglo XIII a raíces de cualquier grado.

puede afirmarse que los chinos poseían una mentalidad dominantemente práctica y técnica

Un balance

Durante la Edad Media, los chinos llegaron a alcanzar avances que se encontraban muy por delante de los obtenidos por los europeos. No obstante, no tenían los mismos marcos teóricos, ideológicos o sociales para obtener resultados similares a los que una serie de hechos provocaron en Occidente. Sin duda, puede afirmarse que los chinos poseían una mentalidad dominantemente práctica y técnica.
Muchos encuentran un vínculo entre esa actitud práctica y la filosofía china. Se dice que el taoísmo y especialmente el confucianismo no diferencian entre los dominios de los seres humanos y la naturaleza, y afirman el mundo como un organismo muy amplio en el cual aparecen cinco fases (agua, fuego, metal, madera, y tierra) y dos fuerzas, el ying y yang, y todo se encuentra en una interacción constante. Sea como sea, no se puede negar la existencia de un énfasis en los aspectos místicos entre los taoístas. Por otro lado, sí se puede observar una visión utilitaria y técnica en el campo de los seguidores de Confucio.
Por supuesto, una visión de esta forma tenía que afectar otros dominios aparte de la ciencia, en lacultura general. En lo que se refiere a la astronomía, por ejemplo, los chinos consiguieron obtener muchas observaciones acerca de los astros celestes; también, obtuvieron resultados en las mediciones del tiempo y otros instrumentos de medición. Sin embargo, no se encuentra mucha elaboración acerca de las teorías cosmológicas.
En lo que se refiere a la química y la física, los descubrimientos en general estaban asociados a aplicaciones prácticas. No menos sucedía con la medicina, en la que desarrollaron una gran cantidad de mecanismos y técnicas prácticas, que han resultado en algunos casos superiores a las europeas incluso hasta nuestros tiempos, pero que no estaban fundadas en teorías. De nuevo, una tendencia práctica. Esto por supuesto posee ventajas y desventajas.






 







Share on Google Plus

About Matemática Positiva

Sitio Dedicado al Universo Matemático

0 comentarios:

Publicar un comentario