martes, 30 de enero de 2018

Las Matemáticas en Alemania | siglo XIX | Cantor


Georg Cantor creó un nuevo campo en las matemáticas con la teoría de los "agregados'' (Mengenlehre), la que refería a una teoría de cardinales transfinitos. El punto de partida era reconocer la existencia del infinito actual. Cauchy y Weierstrass pensaban que solo se podía llegar a paradojas si se aceptaba la actualidad del infinito.
En 1872 Dedekind dio una definición de conjunto infinito: S es infinito si es semejante a una parte propia de él mismo. El asunto tiene, sin embargo, su historia. 
Por ejemplo, Galileo analizó la posibilidad de establecer una relación biunívoca entre el total de un conjunto y uno de sus subconjuntos. Por ejemplo, si se asocia a cada n un cuadrado perfecto n2:
Galileo se dio cuenta de que el número de cuadrados perfectos no era menor que el número de enteros naturales. Sin embargo, pensó que lo que sucedía era que las condiciones de mayor, menor o igual no se aplicaban a los conjuntos infinitos. De hecho, abundan los ejemplos que muestran el carácter infinito de los números naturales. Uno de ellos: existe una correspondencia biunívoca entre el conjunto de pares (y el de impares) y N.
Por eso, se puede decir que el conjunto de los pares (y el de los impares) tiene el mismo número de elementos que N (un número infinito). 
Bolzano en un libro que se titula Paradojas del infinito, 1851 (publicado 3 años después de su muerte), había introducido la noción de infinito actual y una óptica conjuntista. Así lo comenta Jean Sebestik, en su introducción al libro de Bolzano:
"La primera novedad de la obra consiste en la introducción de un punto de vista conjuntista en matemáticas. Este nuevo punto de vista responde, en Bolzano, a una doble necesidad. Por un lado, Bolzano intenta unificar a las matemáticas definiendo sus conceptos (en particular los de número y magnitud) a partir de uno solo, el de colección o sistema (Inbegriff). La doctrina de los conjuntos constituye en adelante la base de todas las teorías matemáticas. Por otro lado, los problemas propiamente matemáticos, en particular en la teoría de funciones, imponen un manejo extensional y así requieren de nociones conjuntistas. Finalmente, el punto de visa conjuntista permite abordar la noción de infinito con los medios conceptuales apropiados. Por ello, al inicio de las Paradojas del Infinito, Bolzano da una descripción de sus conceptos conjuntistas; en particular, los de conjunto, el de sucesión o serie, y los de número y de magnitud, que le permitirán dilucidar la naturaleza del infinito. Su concepción del infinito no tiene precedente y revoluciona una tradición milenaria.
Por primera vez, el infinito actual, cuyas propiedades dejan de ser contradictorias para convertirse simplemente en paradójicas, es admitido en matemáticas como concepto definido y con un referente. Por primera vez, igualmente, el infinito es una propiedad susceptible de ser atribuida únicamente a los objetos susceptibles de ser contados o medidos, es decir a los conjuntos y a las magnitudes.'' [Sebestik, Jean, en presentación del libro de Bernard Bolzano: Paradojas del infinito, pág. 10]

Bolzano sí se dio cuenta de que la característica de poner un conjunto en correspondencia biunívoca con uno de sus subconjuntos propios era la clave para su consideración como conjunto infinito.
Cantor se dio cuenta de que no todos los conjuntos infinitos eran del mismo tamaño. Los conjuntos infinitos también se podían ordenar. De lo que se trataba, entonces, era de establecer una jerarquización de números transfinitos y una aritmética para ellos. La potencia o tamaño de un conjunto era el número cardinal. El primer número cardinal transfinito, asignado a conjuntos numerables, era \aleph _{0} .El cardinal de los números reales era c. Este se llama el cardinal del continuo. Y se ha dado desde entonces una gran discusión sobre si esxisten transfinitos entre estos dos cardinales. Cantor mostró que sí hay cardinales mayores que c, al considerar, por ejemplo, el conjunto formado por todos los subconjuntos de los números reales. Esto es así porque siempre el conjunto de los subconjuntos de un conjunto dado tiene un cardinal mayor que el conjunto dado. Cantor también definió los números ordinales transfinitos. Es decir, definió relaciones de orden entre transfinitos. 
Kronecker
Se desató una polémica entre Kronecker y Cantor en torno a la aceptación del infinito actual y del fundamento de las matemáticas. Las teorías de Cantor ganaron la aceptación entre los matemáticos (algunos opinan que sobre todo a partir del trabajo en la teoría de la medida desarrollada por Lebesgue), aunque siempre quedaron dificultades lógicas e incluso paradojas que marcaron debates interesantes a finales del siglo XIX y principios del siglo XX.
Se afirma que el debate entre formalistas e intuicionistas que luego se daría no fue sino una prolongación del debate entre Kronecker y Cantor.








viernes, 26 de enero de 2018

Las Matemáticas en Alemania | siglo XIX | La escuela de Berlín



Kummer

A la escuela de Berlín pertenecieron Ernst Kummer y Frobenius, y se podrían asociar también Richard Dedekind y Georg Cantor. Kummer desarrolló la geometría diferencial de congruencias, que había sido perfilada por Hamilton. Introdujo los números ideales en la teoría de dominios racionales algebraicos. Los trabajos de Kummer contribuyeron en la aritmética de los números algebraicos.
Creador de la teoría de ideales en 1846, y después de trabajar muchos años en los gymnasiums (escuelas secundarias), Ernst Eduard Kummer siguió a Dirichlet en Berlín cuando este último sucedió a Gauss en Göttingen en el año 1855, enseñando hasta 1883.
Se sabe que sus trabajos en la búsqueda por demostrar el último teorema de Fermat, intentos fallidos, lo condujeron a la teoría de ideales. Esto lo desarrollaremos más adelante.

Kronecker 

La aritmetización del análisis tuvo un desarrollo especial en la 'Escuela de Berlín' y en particular con el matemático Leopold Kronecker.
Kronecker hizo contribuciones en las funciones elípticas, en la teoría de ideales, y en la aritmética de las formas cuadráticas. En los trabajos que realizó sobre teoría de los números abogó por la aritmetización de las matemáticas, aunque de una manera especial. Kronecker decía que las matemáticas debían estar basadas en los números naturales. 

De hecho, hay una frase famosa que pronunció en una reunión en Berlín en 1886, que dice así:
"Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk''.
Esto se inscribía en su búsqueda por el rigor en matemáticas. Rechazó la idea de infinito actual y aceptó la definición de una entidad matemática sólo si ésta podía ser verificada en un número finito de pasos.
El tema del infinito tuvo un tratamiento totalmente distinto al que le dio Kronecker en Dedekind y Cantor.

Dedekind 

 

Dedekind fue profesor durante treinta y un años del Technische Hochschule de Brunswick. En su trabajo fue importante la formación que recibiera de Dirichlet, como señala el historiador español de las matemáticas José Ferreirós:
"Con sus sólidos conocimientos de álgebra, teoría de números y análisis, y con su adhesión a las tendencias más rigurosas del momento (Gauss, Cauchy), Dirichlet representaba lo mejor de la matemática de la época, y la tendencia más rigurosa metodológicamente. El cuidado que se tomó enperfeccionar el conocimiento que Dedekind tenía de las distintas ramas de la matemática, la manera en que encauzó su trabajo, y su seguridad en cuestiones metodológicas, fueron sin duda los motivos por los que Dedekind lo consideró siempre su principal maestro y el hombre a quien más debía en su formación.'' [Ferreirós, José: "Introducción'' a Dedekind, Richard: ¿Qué son y para qué sirven los números?, p. 19]

martes, 16 de enero de 2018

Las Matemáticas en Alemania | siglo XIX | Weierstrass


Karl Weierstrass fue profesor de la Universidad de Berlín, aunque había sido maestro en una escuela secundaria durante muchos años. Especialmente durante este período que trabajó en secundaria escribió varios artículos sobre integrales hiperelípticas y sobre ecuaciones diferenciales algebraicas. Contribuyó notablemente a fundamentar la teoría de las funciones complejas sobre series de potencias.
Una de sus contribuciones fue el llamado principio de prolongación analítica. Pudo entonces definir una función analítica como una serie de potencias junto a todas aquellas obtenidas por medio de la prolongación analítica. Esto era útil por ejemplo en la solución de ecuaciones diferenciales en física matemática.
Brindó una gran atención a establecer rigor en la teoría de funciones y en el cálculo de variaciones.
Por ejemplo, en lo que se refiere a nociones de mínimo de una función, derivada, continuidad, etc. Fue Weierstrass precisamente quien descubrió la convergencia uniforme (por lo menos desde 1842): un asunto decisivo para poder diferenciar o integrar series término a término.
Weierstrass descubrió que una función continua sobre un intervalo cerrado sobre el eje real puede expresarse en ese intervalo como una serie de polinomios absoluta y uniformemente convergente. También incluyó funciones de varias variables. 


lunes, 8 de enero de 2018

Las Matemáticas en Alemania | siglo XIX | Riemann



Hijo de un pastor luterano, aunque nació enfermizo poseía una inteligencia precoz. Fue estudiante de Gauss en la Universidad de Göttingen y luego logró ser profesor de esa prestigiosa institución alemana. En Göttingen, obtuvo su doctorado en 1 851, fue Privatdozent en 1854 y profesor en 1959. Murió en 1866 a los 40 años. Influido por asuntos de naturaleza hidrodinámica, realizó su tesis sobre las funciones u + iv = f(x+iy) .Este trabajo condujo a las superficies de Riemann, concepto que abrió el camino de la intervención de la topología en el análisis (un primer artículo sobre topología apenas había sido publicado en 1847 por J. B. Listing). En 1857, al aplicar sus ideas a la hipergeometría y las funciones abelianas encontró una forma de clasificar estas últimas (con un invariante topológico). En la misma línea, trabajó en la aplicación de este tipo de ideas a superficies mínimas.
Cuando Riemann obtuvo la categoría de Privatdozent presentó dos artículos: uno sobre series trigonométricas y los fundamentos del análisis, el otro sobre los fundamentos de la geometría. El primer artículo estudió las condiciones de Dirichlet para expandir una función como serie de Fourier. En esta dirección, introdujo el concepto de "integral de Riemann''. De hecho, mostró que algunas funciones definidas por series de Fourier podían tener un número infinito de máximos o mínimos. Incluso dio ejemplo de una función continua sin derivadas. Con esos resultados el concepto de función se estableció con mayor precisión.
Über die Hypothesen, welche der Geometrie zu Grunde liegen
Fue Gauss quien le había dado a Riemann como tema de estudio los fundamentos de la geometría. El trabajo sin embargo no fue publicado sino hasta 1868 y fue intitulado Über die Hypothesen, welche der Geometrie zu Grunde liegen (Acerca de las hipótesis que están en los fundamentos de la geometría). En este artículo se introduce el espacio como una variedad diferencial topológica con dimensiones. La métrica que definió en esta variedad se hacía por medio de una forma diferencial cuadrática. Esto es muy interesante. Riemann define aquí el carácter del espacio a partir de un comportamiento local, de la misma manera en que había hecho con la función compleja. Esto le permitió clasificar las formas de geometría que existían incluyendo las no euclidianas. Pero, también, le permitió la creación de nuevos tipos de espacio que han encontrado grandes aplicaciones en la física y la geometría. Este asunto lo desarrollaremos en el contexto de la creación de las geometrías no euclidianas.

En 1859, Riemann presentó un artículo donde analizó la cantidad de números primos menor que un cierto número x, F(x) . Para ello utilizó la teoría de números complejos y la distribución de F(x) números primos usando una sugerencia dada por Gauss de que logarítmica:

Este artículo contiene la famosa "hipótesis de Riemann'' sobre la función zeta de Euler ζ(s): para los complejos s=+iy posee todos los ceros no reales en la recta x=½
 

miércoles, 3 de enero de 2018

Las Matemáticas en Alemania | siglo XIX | Jacobi, Dirichlet

Jacobi

El término de "jacobiano'', que usamos en los textos de cálculo actuales fue acuñado por el matemático inglés Sylvester, y refiere a Carl Gustav Jacobi, otro de los grandes matemáticos alemanes de la época, quien estudió en Berlín y fue profesor en la Universidad de Königsberg. Jacobi desarrolló una teoría de funciones elípticas basada en las llamadas "Funciones Theta'', 4 funciones que se construyen por medio de series infinitas.
Su nombre está en los orígenes de la teoría abeliana de funciones de varias variables. Una de sus primeras obras fue Fundamenta nova theoriae functionum ellipticarum (1829). Su trabajo en los determinantes aparece en el libro: De formatione et propietatibus determinantiumen en 1841. La idea de determinante apareció desde Leibniz, y fue tratada por Gabriel Cramer (el de la "regla de Cramer''), también por el mismo Lagrange, aunque finalmente su nombre lo dio Cauchy. 

Dirichlet

Asociado a Gauss y Jacobi, aunque también con matemáticos franceses, se desarrolló el trabajo de Peter Lejeune Dirichlet. Se le suele considerar un puente viviente entre los matemáticos alemanes y franceses de la época. Dirichlet fue profesor de la Universidad de Breslau y luego ocupó la cátedra de Gauss en Göttingen.
Las llamadas "Series de Dirichlet'' se encuentran en un trabajo del año 1837 en el que utilizaba la teoría de funciones analíticas en la teoría de números. De hecho, lo que quería Dirichlet era demostrar que en la sucesión
con a y b primos relativos es posible encontrar un número infinito de números primos. En la demostración usó la serie de la forma 
Sobre la teoría de números, una obra clásica que sirve como introducción y desarrollo de los  resultados de Gauss es: Vorlesungen über Zahlentheorie (1863), donde expone las Disquisitiones  de Gauss y sus propias contribuciones.
Este matemático ofreció una prueba rigurosa de la convergencia de la serie de Fourier; también estableció el llamado "principio de Dirichlet'' en el cálculo de variaciones. Dirichlet fue sucedido  en Göttingen por Bernhard Riemann.